Skip to main content

Posts

REINDEERS CORE ENGINE DEEP DIVE — PART 6

REINDEERS CORE ENGINE DEEP DIVE — PART 6 이번 파트에서는 REINDEERS 플랫폼의 DVRP 코어 엔진 , 즉 DO 생성 → 배차 → 경로 최적화 → ETA 보정 → 재배차(Re-dispatch) 까지 이어지는 전체 기술 구조를 정리한다. 여기서 다루는 내용은 이론적인 DVRP 설명이 아니라, 실제로 운영 가능한 수준으로 구현한 제약 기반 최적화 + AI 보정 + MQ/캐시 구조 에 대한 기록이다. 37. DO 시스템의 기본 구조 재정리 REINDEERS는 모든 운송 지시를 DO(Delivery Order) 로 통일했다. Pickup DO — 고객사 → 창고 (입고용) Delivery DO — 창고 → 고객사 (출고용) Direct DO — 고객사 → 목적지 (직배송, 창고 미경유) ASN/OSN은 어디까지나 입·출고 계획(Notice) 이고, 실제 트럭이 움직이는 단위는 DO이다. DVRP 엔진이 다루는 모든 대상은 결국 “DO 집합”이다. ASN / OSN (계획) ↓ (DO 생성기) DO 집합 (Pickup / Delivery / Direct) ↓ (DVRP 엔진) 트럭·기사·경로·ETA 38. DVRP 엔진의 목표와 제약 조건 REINDEERS DVRP 엔진은 전형적인 VRP를 그대로 구현하지 않는다. 실제 현장의 제약을 우선해서 알고리즘을 구성했다. 38.1 최적화 목표 총 운행 거리 최소화 지각(ETA 초과) 최소화 트럭 당 적재율(CBM/중량) 최대화 AI 배차 실패율 최소화 38.2 강제 제약 조건 트럭 최대 CBM·중량 초과 금지 근로 시간·휴게 시간 준수 냉장/위험물/특수 화물...

REINDEERS 플랫폼 확장 아키텍처 — AI 의사결정 보조와 DVRP 기반 3PL의 결합

REINDEERS 플랫폼 확장 아키텍처 — AI 의사결정 보조와 DVRP 기반 3PL의 결합 REINDEERS는 2026년 1월을 기점으로, 기존의 나라별 통합 B2B 무역 플랫폼을 국제 무역의 실제 실행 구조를 모두 흡수하는 서비스 플랫폼 으로 확장한다. 이번 확장의 핵심은 두 가지다. AI를 “자동화 도구”가 아닌 의사결정 보조자 로 배치하는 구조 DVRP 기반 3PL과 무역 플랫폼을 하나의 거래 흐름 로 결합하는 구조 이 글은 REINDEERS가 왜 이 두 가지를 동시에 선택했는지, 그리고 이것이 국제 무역 플랫폼 설계에서 어떤 기술적 의미를 갖는지를 설명한다. 1. 국제 무역의 본질적인 문제 국제 무역은 오랫동안 다음과 같은 방식으로 운영되어 왔다. 견적: 이메일, 메신저, 엑셀 계약: PDF, 스캔 파일 생산·납품 일정: 사람의 기억과 전화 물류: 포워딩 경험 의존 정산: 사후 확인 문제는 이 모든 과정이 하나의 연속된 의사결정 흐름 임에도 불구하고, 각 단계가 서로 단절되어 있다는 점이다. REINDEERS는 이 단절의 원인을 기술적으로 다음과 같이 정의했다. 결정 기준이 데이터로 남지 않는다 이전 판단이 다음 단계로 전달되지 않는다 사람이 모든 비교·검증·정리를 직접 수행한다 이 구조에서는 AI를 단순 자동화 도구로 넣어도 근본적인 개선이 일어나지 않는다. 2. AI를 ‘의사결정 보조자’로 설계한다는 의미 REINDEERS에서 AI는 “대신 결정하는 존재”가 아니다. AI의 역할은 다음과 같이 정의된다. 사람이 결정을 내릴 수 있도록, 모든 선택지를 구조화하고 비교 가능하게 만드는 역할 이를 위해 REINDEERS는 AI를 다음 위치에 배치했다. 견적 요청 구조화 견적서 발행 검증 상품 정보 정규화 포워딩 조건 비교 물류·시공 일정 정합성 검증 즉, AI는 “...

REINDEERS CORE ENGINE DEEP DIVE — PART 5

REINDEERS CORE ENGINE DEEP DIVE — PART 5 창고(WMS)와 운송(DVRP) 운영에서 가장 변수가 많은 영역은 사람이다. 출퇴근 패턴, 지각·결근, 갑작스러운 물량 폭주, 고객사의 긴급 출고 요청, 운전기사의 장거리 운행 등 사람 기반 요소는 단순 규칙으로 제어하기 어렵다. REINDEERS는 이 문제를 해결하기 위해 AI 기반 Dynamic Workforce Scheduling Engine 을 구축했다. 이 엔진은 작업량 예측부터 인력 배분, 실시간 스케줄 조정까지 물류 현장에서 발생하는 모든 변수를 계산하여 작업자를 최적의 위치에 배치한다. 28. Dynamic Workforce Scheduling: 기본 개념 Workforce 엔진은 다음 두 가지 핵심 목표를 가진다. ① 물류 작업량의 예측(Predictive Workload Calculation) ② 작업자 자동 배치(Automated Workforce Assignment) 즉, “내일 필요한 인력이 몇 명인지?”를 미리 계산하고, “누가 어떤 업무를 맡아야 하는지?”를 시스템이 자동으로 결정한다. 29. Workload Estimation Engine (작업량 예측 엔진) 작업량 예측은 단순 통계가 아니라 실제 DO/ASN/OSN/재고 이동/반품/폐기/실사 데이터 전체를 이용한 예측 모델 이다. 29.1 예측 모델 입력값 지난 30/60/90일간의 출고량 패턴 고객사별 출고 스케줄(정기출고 / 월말 피크) 유통기한 임박 SKU 증가량 (FEFO 기반) 입고 예약량(ASN 기반) 반품 증가 패턴 직원 휴가/결근율 패턴 차량 가용성(DVRP 연동) Zone별 혼잡도(피킹 동선 분석)...

REINDEERS DVRP AI CORE ENGINE 소개

REINDEERS DVRP AI CORE ENGINE 소개 REINDEERS는 2026년 음력 설 이후, 2월 중순을 목표로 DVRP(Dynamic Vehicle Routing Platform) 베타 서비스를 공식 오픈 AI가 실시간으로 판단·결정·지시·최적화 이번 글은 기술팀의 시각에서, DVRP가 어떤 구조로 설계되었고 AI가 어떻게 업무를 실제로 “대신 수행”하도록 만든 기술적 기반을 설명합니다. 프레임워크나 언어는 보안상 비공개하지만, 핵심 알고리즘·AI 아키텍처·동기화 구조·RAG 전략 1. 서비스 개요 — AI 기반 물류 엔진의 출현 REINDEERS DVRP는 다음의 핵심 기능들을 통합한 하나의 AI 플랫폼입니다. 트럭·기사·창고 간 배차 자동화 Direct DO(직배송)의 다구간 경로 계산 입고 ASN·출고 ASN·DO 생성 전체 자동화 GPS 기반 실시간 위치 추적 및 ETA 예측 FIFO·CBM·거리·로트 기반 재고 할당 엔진 LLM 기반 AI 오케스트레이션(업무 지시 자동화) RAG 기반 현실 데이터 참조형 AI 의사결정 대규모 트럭 운영(1000대 규모)을 위한 MQ · 비동기 구조 이 모든 기능은 REINDEERS CORE ENGINE 이라는 단일 구조에서 작동합니다. Web, Mobile Web, Native App이 동일 엔진을 공유하도록 만들어져 있으며 AI가 어느 디바이스에서든 같은 판단을 내릴 수 있는 구조입니다. 2. 프론트 구조 — Web · Mobile Web · Native App 통합 2-1. Web 대량의 데이터 조회, 트럭/기사 모니터링, 창고 운영, DO 처리 등을 담당합니다. 업무 플로우를 AI가 자동으로 생성하기 때문에 Web은 단순히 입력·확인 UI 역할을 합니다. 2-2. Mobile Web 운전기사와 창고 담당자를 위한 현장 중심 UI입니다. 입출고 스캔, 사진 제출, GPS 이벤트 전송, 증빙...

REINDEERS TECH DEEP DIVE — Part 4

REINDEERS CORE ENGINE DEEP DIVE — PART 4 이번 Part 4에서는 REINDEERS WMS의 핵심인 AI 재배치 엔진(AI Relocation Engine) 과 Dynamic Warehouse Optimization(동적 창고 최적화) 의 기술 구조를 다룬다. 이 기능은 실제 운영 현장에서 “비용을 줄이고 처리 속도를 높이며, 재고를 항상 최적 위치에 유지”하게 하는 기술적 핵심이다. 20. AI 재배치 엔진(AI Relocation Engine) AI 재배치 엔진은 매일 또는 특정 이벤트 발생 시, 창고 전체 재고의 최적의 위치를 재계산해 재배치를 제안 하는 역할을 한다. 20.1 재배치가 필요한 이유 재고 회전율 변화 출고 트래픽 증가 또는 감소 신규 고객사 입고 증가 유통기한 임박 SKU 증가 Zone 과부하(피킹 동선 비효율) 이러한 변화는 사람보다 AI가 더 빠르게 감지하고 계산할 수 있다. 20.2 AI 재배치 판단 로직 1. SKU별 회전율 계산 2. 현재 Zone/Bin 점유율 분석 3. 피킹 동선 시뮬레이션 4. FEFO / LOTT(로트) / CBM 제약 적용 5. Zone별 트래픽 분산 계산 6. "재배치 필요 점수" 계산 7. 재배치 작업 자동 생성 20.3 재배치 점수 공식(예시) 모든 점수는 실시간 데이터 기반이다. relocation_score = (turnover_weight * turnover_change_pct) + (distance_weight * avg_picking_distance) + (expiry_weight * expiry_risk_factor) + (traffic_weight * zone_traffic_congestion) ...

REINDEERS TECH DEEP DIVE — Part 3

REINDEERS CORE ENGINE DEEP DIVE — PART 3 이번 Part 3에서는 REINDEERS 플랫폼의 고급 엔진 아키텍처를 다룬다. 실제 운영에서 필요한 AI 예측 엔진, 트럭 디지털 트윈, 고급 캐시 계층, CDC 기반 실시간 데이터 스트림 등 플랫폼의 “지능화·자동화 기반 기술”을 상세하게 설명한다. 14. AI 예측 엔진(Forecasting Engine) — 출고량·재고회전·배송량 예측 물류 데이터가 누적되기 시작하면 가장 먼저 도입되는 기능이 예측이다. REINDEERS의 예측 엔진은 다음 3가지를 핵심 목표로 둔다. 출고량 예측(Outbound Volume Forecast) 재고 회전율 예측(Inventory Turnover Forecast) 배송량·트럭 수요 예측(Delivery Volume Forecast) 14.1 예측에 사용하는 주요 피쳐(Features) 출고/입고(OSN/ASN) 발행량 고객사별 SKU 사용 패턴 요일·월별 계절성(Seasonality) 리드타임(생산 → 픽업 → 입고 → 출고) 도착지 클러스터(지역 단위 볼륨) 차량 가동률 AI가 수행한 배차 결과(성공/실패/대안 배차) 이렇게 수집된 피쳐는 “전통적 ML 모델”과 “대규모 언어모델 기반 Feature Reasoning”을 결합한 하이브리드 방식으로 처리된다. 14.2 하이브리드 예측 프로세스 Raw Data → Feature Extraction → ML Forecast ↘ LLM Reasoner → Confidence 수정 ML Forecast: LightGBM / CatBoost 기반 시계열 예측 ...

REINDEERS TECH DEEP DIVE — Part 2

REINDEERS CORE ENGINE DEEP DIVE — PART 2 전 편에서는 재고 할당·직배송 경로 설계·AI Action Schema·RAG 구조 등 물류 시스템의 핵심 알고리즘을 설명했다. 이번 Part 2에서는 REINDEERS 플랫폼의 근본을 지탱하는 배차 엔진, ETA 계산, 이벤트 소싱, 모바일 오프라인 엔진, 멀티테넌시 보안 을 기술적 관점에서 심층적으로 다룬다. 7. AI 배차 엔진(Dispatch Engine) — 비용·시간·적재율을 동시에 계산하는 멀티 목표 알고리즘 배차 엔진은 “배송 DO 생성 후” 자동으로 작동한다. 단일 목적 최적화가 아니라, 아래 4개의 목적을 동시에 평가하는 Multi-Objective Optimization 구조를 갖는다. 7.1 평가 지표(Score Model) score = (w1 * distance_score) + (w2 * eta_score) + (w3 * cbm_score) + (w4 * cost_score) distance_score : 기존 경로에 삽입했을 때 증가하는 총 주행거리 eta_score : 도착 예정시간(ETA) 지연 정도 cbm_score : 적재 가능한지, 적재율이 적절한지 cost_score : 연료 + 인건비 + 트럭 가동 비용 가중치 w1~w4는 회사 정책에 따라 동적으로 변경 가능하다. 7.2 경로 삽입 알고리즘(Route Insertion) 배차 엔진의 핵심은 “진행 중인 트럭의 현재 경로”에 새로운 DO를 삽입할 수 있는지 계산하는 것이다. 기존 경로: [A → B → C] 신규 DO: D 후보: 1) A → D → B → C 2) A → B → D → C 3) A → B → C → D 각 삽입 케이스의 ETA/거리...